w(t) \longrightarrow \bigg[\frac{\sqrt{2\sigma ^2\beta}}{s+\beta}\bigg] \longrightarrow \bigg[\frac{1}{s}\bigg] \longrightarrow y
$w(t) \longrightarrow \bigg[\frac{\sqrt{2\sigma ^2\beta}}{s+\beta}\bigg] \longrightarrow \bigg[\frac{1}{s}\bigg] \longrightarrow y$
\usepackage{amsmath} %可以使用\boldsymbol加粗罗马字符;\mathbf对罗马字符不起作用。
\mathbf{x}_{k+1} = \boldsymbol{\phi}_k \mathbf{x}_k + \mathbf{w}_k
$\mathbf{x}_{k+1} = \boldsymbol{\phi}_k \mathbf{x}_k + \mathbf{w}_k$
%注意{和}是特殊字符,使用\{和\}
\mathbf{Q}_k=E[\mathbf{w}_k\mathbf{w}_k^T]
=E\big\{ \big[ \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u) \mathbf{G}(u) \mathbf{w}(u)du \big] \big[ \int_{t_k}^{t_{k+1}}\boldsymbol{\phi}(t_{k+1},v) \mathbf{G}(v) \mathbf{w}(v)dv \big]^T \big\}
=\int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u)\mathbf{G}(u)E[\mathbf{w}(u)\mathbf{w}^T(v)]\mathbf{G}^T(v)\boldsymbol{\phi}^T(t_{k+1},v)dudv
$\mathbf{Q}_k=E[\mathbf{w}_k\mathbf{w}_k^T]$
$=E\big\{ \big[ \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u) \mathbf{G}(u) \mathbf{w}(u)du \big] \big[ \int_{t_k}^{t_{k+1}}\boldsymbol{\phi}(t_{k+1},v) \mathbf{G}(v) \mathbf{w}(v)dv \big]^T \big\}$
$=\int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} \boldsymbol{\phi}(t_{k+1}, u)\mathbf{G}(u)E[\mathbf{w}(u)\mathbf{w}^T(v)]\mathbf{G}^T(v)\boldsymbol{\phi}^T(t_{k+1},v)dudv$
\left[\begin{matrix}
\dot{x_1}\\\dot{x_2}
\end{matrix}\right]
= \left[
\begin{matrix}
0&1\\0&-\beta
\end{matrix}
\right]
\left[\begin{matrix}
x_1\\x_2
\end{matrix}\right] +
\left[\begin{matrix}
0\\\sqrt{2\sigma^2\beta}
\end{matrix}\right]w(t)
$\left[\begin{matrix}\dot{x_1}\\\dot{x_2}\end{matrix}\right] = \left[\begin{matrix}0&1\\0&-\beta\end{matrix}\right] \left[\begin{matrix}x_1\\x_2\end{matrix}\right] + \left[\begin{matrix}0\\\sqrt{2\sigma^2\beta}\end{matrix}\right]w(t)$
y=\left[\begin{matrix}
1&0\
end{matrix}\right]
\left[\begin{matrix}
x_1\\x_2
\end{matrix}\right]
$y=\left[\begin{matrix}1&0\end{matrix}\right]\left[\begin{matrix}x_1\\x_2\end{matrix}\right]$
三角形帽子表示估计
\mathbf{\hat{x}}_k^-=\boldsymbol{\Phi}_k\mathbf{\hat{x}}_{k-1}+\mathbf{G}_k\mathbf{u}_k
$\mathbf{\hat{x}}_k^-=\boldsymbol{\Phi}_k\mathbf{\hat{x}}_{k-1}+\mathbf{G}_k\mathbf{u}_k$